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Abstract
In this paper we discuss possible generalizations of the discrete KP (Toda
lattice) hierarchy. As a result, we introduce the integrable hierarchy which
can be considered as the proper extension of the discrete KP hierarchy. Such
extension forces us to introduce an infinite number of additional multi-times
t (n) ≡ (t

(n)
1 ≡ x(n), t

(n)
2 , . . .), n � 2, whereas ordinary discrete KP is relevant

to t (1). It is shown that any subsystem of extended discrete KP attached to
multi-time t (n) is in fact equivalent to a bi-infinite sequence of continuous
KP hierarchies whose Lax operators are glued together by compatible ‘gauge’
transformations.

This paper can be thought of as a natural continuation and generalization of
our previous paper (Svinin A K (2001) J. Phys. A: Math. Gen. 34 10559–68).

PACS numbers: 02.30.IR, 05.50.tq

1. Introduction

It is now recognized that discrete equations play an important role in integrability theory,
helping in the study of discrete symmetries of some continuous models and their respective
solutions (see, for example, [2, 3, 11] and references therein). The interrelation between the
discrete and continuous integrable hierarchies allows one to obtain solutions to the discrete
multi-matrix models [10–12].

There are studies [3] in which some integrable lattices are treated as a union of sites, each
being a gauge copy of continuous multi-boson (constrained) KP hierarchies. On the whole,
these works deal with generalized Toda lattices and so-called ‘square-root’ lattices connected
with the latter by Miura transformations.

In our recent work [1], we introduced a broad class of lattices with finite number of fields
satisfying a commonly used integrability criterion—having a Lax pair. Besides others, this
class contains many familiar integrable models such as the Volterra lattice, its generalizations
sometimes referred to as Bogoyavlenskii lattices, generalized Toda chains and others known
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in the literature [15]. To some extent the paper [1] can be considered as a continuation of a
series of the papers [3].

This paper is a generalization of [1]. The principal result consists of constructing
of extension of the well known discrete KP hierarchy. It turned out that many known
integrable lattices can be interpreted as certain specializations of the extended discrete KP.
This construction forces us to introduce additional multi-times t (n). We refer to any subsystem
attached to t (n) with fixed n � 1, due to [14], as the nth discrete KP.

We show in this paper that the nth discrete KP is in fact equivalent to a bi-infinite sequence
of copies of differential KP hierarchy whose Lax operators are connected to each other by
compatible ‘gauge’ transformations. The compatibility of the latter turned out to be equivalent
to equations of motion which represent the first flow in nth discrete KP.

The paper is organized as follows. After giving some notation in section 2, in section 3
we introduce and discuss the extension of the discrete KP. Section 4 is devoted to providing a
relationship between nth discrete KP and sequence of differential KP.

2. The differential and discrete KP hierarchy

Let us recall some basic facts about the differential KP hierarchy in the spirit of the Sato
theory [5–7]. This approach is essentially based on the calculus of the pseudo-differential
operators (�DOs) [8]. For reasons of completeness a certain amount of notation has to be
introduced.

The unknown functions (fields) depend on spatial variable t1 ≡ x ∈ R1 and some
evolution parameters t2, t3, . . . . The symbols ∂ and ∂p stand for derivation with respect to
x and tp, respectively. In this section the symbol t denotes KP multi-time, i.e. the infinite set
of evolution parameters (t1, t2, t3, . . .). Let R be a commutative ring consisting of all smooth
functions a = a(x). Then the noncommutative ring R[∂, ∂−1) of �DOs consists of all formal
expressions

A =
N∑

i=−∞
ai(x)∂

i N ∈ Z

with coefficients in R. One says that �DO A is of order N . The operator ∂ : R → R is
entirely defined by the generalized Leibniz rule

∂i ◦ a =
∞∑

j=0

(
i

j

)
a(j)∂i−j

where a(j) ≡ ∂ja. The adjoint of A is given by

A∗ =
N∑

i=−∞
(−∂)i ◦ ai.

An important part of the theory deals with the decomposition of elements of R[∂, ∂−1) into
positive (differential) and negative (integral) parts. We denote

A+ =
∑
i�0

ai(x)∂
i A− =

∑
i�−1

ai(x)∂
i

respectively.
It is convenient to introduce a formal dressing operator ŵ = 1 +

∑
k�1 wk∂

−k . Then the
KP hierarchy can be represented via Sato–Wilson equations

∂pŵ = −(ŵ∂pŵ−1)−ŵ = (ŵ∂pŵ−1)+ŵ − ŵ∂p (1)
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or equivalently as Lax equations

∂pQ = [(Qp)+,Q] ≡ (Qp)+Q−Q(Qp)+ (2)

on first-order �DO Q = ŵ∂ŵ−1 = ∂ +
∑

k�1 uk(t)∂
−k . A very important observation is that

evolution equations of the KP hierarchy are solved in terms of a single τ -function satisfying
an infinite set of bilinear equations which are encoded in the fundamental bilinear identity

resz[ψ(t, z)ψ∗(t ′, z)] ≡ 1

2π i

∮
0
ψ(t, z)ψ∗(t ′, z) dz = 0. (3)

Recall that the formal Baker–Akhiezer wavefunction ψ and its conjugate ψ∗ entering
fundamental identity are related to the KP τ -function via

ψ(t, z) = τ(t − [z−1])

τ (t)
exp(ξ(t, z)) ψ∗(t, z) = τ(t + [z−1])

τ (t)
exp(−ξ(t, z))

with ξ(t, z) = ∑∞
p=1 tpz

p and [z−1] = (1/z, 1/(2z2), 1/(3z3), . . .). Then the bilinear
identity (3) becomes

exp

(∑
p�1

apDtp

) ∞∑
k=0

pk(−2a)pk+1(D̃t )τ • τ = 0 ∀a = (a1, a2, . . .).

A few remarks are in order. For a given polynomial p(∂/∂t1, ∂/∂t2, . . .) in ∂/∂ti , one defines

p(Dt1 ,Dt2 , . . .)f • g
= p

(
∂

∂u1
,

∂

∂u2
, . . .

)
f (t1 + u1, t2 + u2, . . .)g(t1 − u1, t2 − u2, . . .)

∣∣∣∣
u=0

.

In what follows D̃t ≡
(
Dt1 ,

1
2Dt2 ,

1
3Dt3 , . . .

)
. It is worth also recalling the identity

1

k!

(
d

du

)k

f (t + [u])g(t − [u])

∣∣∣∣
u=0

= pk(D̃)f • g (4)

which will be useful in what follows. Here Schur polynomials pk(t) are defined through

exp

( ∞∑
p=1

tpz
p

)
=
∞∑
k=0

zkpk(t).

The discrete KP is a KP hierarchy where the linear problem gets replaced by its discrete
counterpart. More exactly, equations of motion of the discrete KP are encoded by the Lax
equation

∂Q

∂tp
= [Qp

+ ,Q]

on difference operator Q = � +
∑

k�1 ak−1�
1−k. The main reference in this context is the

paper by Ueno and Takasaki [4]. This hierarchy, as well as a large class of its solutions,
is well described in [9]. What we learn from this work (see also [10]) is that the discrete
KP is tantamount to a bi-infinite sequence of differential KP copies ‘glued’ together by
Darboux–Bäcklund (DB) transformations. This leads to certain bilinear relations connecting
the consecutive KP τ -functions. It should be noted that integrable systems which are chains
of infinitely many copies of KP-type differential hierarchies turn out to be useful in matrix
models [10–12]. In the work [13] by Dickey, it was shown that the discrete KP hierarchy is
the most natural generalization of the modified KP.
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3. Extended discrete KP hierarchy

Throughout the paper, we deal with∞×∞matrices. Given the shift operator� = (δi,j−1)i,j∈Z
and the ‘spectral’ parameter z one considers the following spaces of the difference operators
(z acts as component-wise multiplication):

D(n,r) =
{ ∑
−∞�k<∞

lkz
k(n−1)�r−kn

}
= D(n,r)

− + D(n,r)
+ n � 1 r ∈ Z

with lk ≡ (lk(i))i∈Z being bi-infinite diagonal matrices. One can easily check the following
properties:

D(n,r1) · D(n,r2) ⊂ D(n,r1+r2) � · D(n,r) ⊂ D(n,r+1)

D(n,r) ·� ⊂ D(n,r+1) zn−1D(n,r) ⊂ D(n,r+n).

Remark 1. In the case n = 1, a dependence of D(1,r) on r make no sense because L ∈ D(1,r)

does not depend on z.
The splitting of D(n,r) into ‘negative’ and ‘positive’ parts is defined as follows:

D(n,r)
− =

{ ∑
r−kn�−1

lkz
k(n−1)�r−kn

}
D(n,r)

+ =
{ ∑

r−kn�0

lkz
k(n−1)�r−kn

}
.

In the following we assume that the entries of lk may depend on multi-time t ≡ {t (n)p }.
For corresponding time derivatives we use the following notation: ∂(n)

p = ∂/∂t(n)p and

∂(n) = ∂/∂x(n), where x(n) ≡ t
(n)
1 .

The phase space M consists of the entries of diagonal matrices wk = (wk(i))i∈Z, k � 1.
For each n � 1, we define the ‘wave’ operator

S(n) = I +
∑
k�1

wkz
k(n−1)�−kn ∈ I + D(n,0)

− (5)

and the corresponding Lax operator

Q(n) ≡ S(n)�S(n)−1 = � +
∑
k�1

a
(n)
k−1z

k(n−1)�1−kn ∈ D(n,1). (6)

It is clear that the coordinates a
(n)
k are related to the original ones by some polynomial relations.

For example, from (6) one can read off the following:

a
(n)
0 (i) = w1(i)− w1(i + 1)

a
(n)
1 (i) = w2(i)− w2(i + 1) + w1(i − n + 1)(w1(i + 1)− w1(i))

a
(n)
2 (i) = w3(i)− w3(i + 1) + w1(i − 2n + 1)(w2(i + 1)− w2(i))

+ w2(i − n + 1)(w1(i + 1)− w1(i))

+ w1(i − 2n + 1)w1(i − n + 1)(w1(i)− w1(i + 1)).

Now we are in position to define the flows on M with respect to parameters t (n)p . This
uses the equations of motion on the ‘wave’ operator (henceforth we shall employ the shorthand
notation S for S(n) and Q for Q(n) whenever this will lead to confusion)

zp(n−1) ∂S

∂t
(n)
p

= Q
pn
+ S − S�pn ∈ D(n,pn)

zp(n−1) ∂(S
−1)T

∂t
(n)
p

= (S−1)T �−pn − (Q
pn
+ )T (S−1)T .

(7)
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Note that the first and second equations in (7) are in fact equivalent. Evolutions of S induces
evolutions of Q in the form of the Lax equations

zp(n−1) ∂Q

∂t
(n)
p

= [Qpn
+ ,Q] ∈ D(n,pn+1). (8)

One can easily check that [Qpn
+ ,Q] = −[Qpn

− ,Q] is of the same form as the lhs of (8) and
therefore (8) and equivalent equations (7) are properly defined.

Obviously, the discrete KP hierarchy can be regarded as a subsystem of (7) with respect
to the infinite set of parameters t (1) = (t

(1)
1 , t

(1)
2 , . . .). For this reason, we refer to (7) as the

extended discrete KP hierarchy. The subsystem of (7) corresponding to evolution parameters
t (n) = (t

(n)
1 , t

(n)
2 , . . .) we call, following [14], the nth discrete KP hierarchy.

It is also useful to consider the evolution equations

zp(n−1) ∂Q
r

∂t
(n)
p

= [Qpn
+ ,Qr ] r ∈ Z (9)

that follow from (8). It is easy to see that the rth power of Q is of the form

Qr = �r +
∑
k�1

a
(n,r)
k−1 zk(n−1)�r−kn ∈ D(n,r)

with diagonal matrices a
(n,r)
k whose entries are polynomially expressed via original coordinates

wk(i). For example

a
(n,r)
0 (i) =

r∑
s=1

a
(n)
0 (i + s − 1) for r � 1

a
(n,r)
0 (i) = −

−r∑
s=1

a
(n)
0 (i − s) for r � −1

a
(n,0)
0 (i) ≡ 0.

4. nth discrete KP

Define χ(z) = (zi)i∈Z , χ∗(z) = χ(z−1) and wavevectors

�(t, z) = Wχ(z) �∗(t, z) = (W−1)T χ∗(z) (10)

where W ≡ S exp
(∑∞

p=1 t (n)p �p
)
. The discrete linear system

Q�(t, z) = z�(t, z) QT �∗(t, z) = z�∗(t, z)
zp(n−1)∂(n)

p � = Q
pn
+ � zp(n−1)∂(n)

p �∗ = −(Q
pn
+ )T �∗

(11)

clearly follows from (7) and (10). From (10), it follows that

�i(t, z) = zi(1 + w1(i)z
−1 + w2(i)z

−2 + · · ·)eξ(t(n),z)

= zi(1 + w1(i)∂
(n)−1 + w2(i)∂

(n)−2 + · · ·)eξ(t(n),z)

≡ ziŵi(∂
(n))eξ(t(n),z) ≡ ziψi(t, z).

Next, we show the equivalence of the nth discrete KP to the bi-infinite sequence of
differential KP copies ‘glued’ together by compatible gauge transformations, one of which can
be recognized as the DB transformation mapping Qi ≡ ŵi∂

(n)ŵ−1
i to Qi+n ≡ ŵi+n∂

(n)ŵ−1
i+n.
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Proposition 1. The following three statements are equivalent:

(i) The wavevector �(t, z) satisfies the discrete linear system

Qr�(t, z) = zr�(t, z) zn−1∂(n)� = Qn
+� r ∈ Z. (12)

(ii) The components ψi of the vector ψ ≡ (ψi = z−i�i)i∈Z satisfy

G
(r)
i ψi(t, z) = zψi+n−r (t, z) Hiψi(t, z) = zψi+n(t, z) (13)

with Hi ≡ ∂(n) −∑n
s=1 a

(n)
0 (i + s − 1) and

G
(r)
i ≡ Hi + a

(n,r)
0 (i + n− r)

+ a
(n,r)
1 (i + n− r)H−1

i−n + a
(n,r)
2 (i + n− r)H−1

i−2nH
−1
i−n + · · · .

(iii) For the sequence of ∂(n)-dressing operators {ŵi, i ∈ Z} the equations

G
(r)
i ŵi = ŵi+n−r∂

(n) Hiŵi = ŵi+n∂
(n) (14)

hold.

Remark 2. Since Q0 = I and a
(n,0)
k (i) = 0, we have in this case G

(0)
i = Hi .

Proof of Proposition 1. Rewrite equations (12) in explicit form:

�i+r + a
(n,r)
0 (i)zn−1�i+r−n + a

(n,r)
1 (i)z2(n−1)�i+r−2n + · · · = zr�i

zn−1∂(n)�i = �i+n + zn−1

( n∑
s=1

a
(n)
0 (i + s − 1)

)
�i.

In terms of wavefunctions ψi the latter is rewritten as

zψi+r + a
(n,r)
0 (i)ψi+r−n +

1

z
a

(n,r)
1 (i)ψi+r−2n + · · · = zψi (15)

∂(n)ψi = zψi+n +

( n∑
s=1

a
(n)
0 (i + s − 1)

)
ψi. (16)

One sees that equation (16) coincides with the second one in (13). Shifting i → i − r + n

in (15) and combining it with (16) one can obtain the first equation in (13). Therefore we have
proved (i) ⇒ (ii). The converse can also easily be shown by returning to the functions �i .
The equivalence (ii)← (iii) follows from the representation ψi(t, z) = ŵieξ(t(n),z). �

Let us write down in explicit form the equations of motion coded in the Lax equation

zn−1∂(n)Qr = [Qn
+,Q

r ] (17)

which is the consistency condition of the linear discrete system (12). We have

∂(n)a
(n,r)
k (i) = a

(n,r)
k+1 (i + n)− a

(n,r)
k+1 (i) + a

(n,r)
k (i)

( n∑
s=1

a
(n)
0 (i + s − 1)

−
n∑

s=1

a
(n)
0 (i + s + r − (k + 1)n− 1)

)
k = 0, 1, . . . . (18)

Notice that the simplest form of these flows is in the original coordinates:

∂(n)wk(i) = wk+1(i + n)− wk+1(i) + wk(i)(w1(i)− w1(i + n)).

System (18) allows for obvious reductions specified by conditions a
(n,r)
k (i) ≡ 0 when

k � l with some l � 1. Reducing (18) along this line leads to a variety of l-field lattices. The
interested reader can find in [1] a collection of integrable lattices known from the literature [15]
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which can be derived as the above-mentioned reductions of (18). Unfortunately, the case
r � −1 in [1] was overlooked. To fill this gap, let us recollect the Belov–Chaltikian lattice [16]
(here ′ ≡ ∂/∂x(1), a0(i) ≡ a

(1)
0 (i) and a1(i) ≡ a

(1,−1)
1 (i)):

a′0(i) = a1(i + 1)− a1(i + 2) + a0(i)(a0(i + 1)− a0(i − 1))

a′1(i) = a1(i)(a0(i)− a0(i − 3))

which is relevant, as can be checked, to the specialization n = 1, r = −1, l = 2.
Define an infinite set of �DOs {G(,,r)

i , i, ,, r ∈ Z} by means of the following recurrence
relations:

G
(,+1,r)
i = G

(,,r)
i+n Hi , = 0, 1, 2, . . .

G
(,−1,r)
i = G

(,,r)
i−n H−1

i−n , = 0,−1,−2, . . .
(19)

with

G
(0,r)
i ≡ G

(r)
i−nH

−1
i−n = 1 + a

(n,r)
0 (i − r)H−1

i−n

+ a
(n,r)
1 (i − r)H−1

i−2nH
−1
i−n + a

(n,r)
2 (i − r)H−1

i−3nH
−1
i−2nH

−1
i−n + · · · .

It is important to observe that

a
(n,r)
, (i + ,n− r) = res∂(n)G

(,,r)
i . (20)

Proposition 2. The following auxiliary equations hold:

G
(,,r)
i ψi = z,ψi+,n−r . (21)

Proof. By induction. Let , = 0, then

G
(0,r)
i ψi = G

(r)
i−nH

−1
i−nψi = z−1G

(r)
i−nψi−n = ψi−r .

Now suppose that (21) is true for some l, then

G
(,+1,r)
i ψi = G

(,,r)
i+n Hiψi = zG

(,,r)
i+n ψi+n = z,+1ψi+(,+1)n−r .

This proves (21) for positive integers ,. Similar arguments are used for negative ,. �
As a consequence of the proposition, we obtain G

(,,,n)
i = Q,

i . Note that equation (21) in
equivalent form is rewritten as

G
(,,r)
i ŵi = ŵi+,n−r∂

(n),. (22)

Proposition 3. The relation

G
(,1,r1)
i+,2n−r2

G
(,2,r2)
i = G

(,1+,2,r1+r2)
i (23)

holds.

Proof. Taking into account (22), we obtain that left multiplication of the lhs and rhs of (23) on
ŵi gives the same result, namely ŵi+(,1+,2)n−r1−r2(∂

(n)),1+,2 . This proves the proposition. �
As we have mentioned above, the consistency condition of the linear system (12) expressed

in the form of a Lax equation reads in explicit form as the lattice (18). As a consequence of
proposition 3 we obtain that this system guarantees the validity of permutation relations

G
(,1,r1)
i+,2n−r2

G
(,2,r2)
i = G

(,3,r3)
i+,4n−r4

G
(,4,r4)
i (24)

with arbitrary integers {,k, rk}4k=1 such that ,1 + ,2 = ,3 + ,4 and r1 + r2 = r3 + r4. It is clear
that permutation relation (24) can be extended on that with arbitrary number of cofactors. In
addition, since G

(0,0)
i = 1 we have

G
(,,r)−1

i = G
(−,,−r)
i+,n−r .

From the above we learn that system (18) guarantees that the set of bi-infinite sequences of
�DOs {G(,,r)

i , i ∈ Z} endowed with the multiplication rule (23) bears the structure of the
group isomorphic to Z ×Z.
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Proposition 4. By virtue of (22) and its consistency condition (24), ∂(n)-Lax operators Qi are
connected with each other by invertible compatible gauge transformations

Qi+,n−r = G
(,,r)
i QiG

(,,r)−1

i . (25)

Remark 3. Since Q,
i = G

(,,,n)
i , the relation (25) in the case r = ,n becomes a trivial identity.

Proof of Proposition 4. Taking into account (22), we have

Qi+,n−r = ŵi+,n−r∂ŵ
−1
i+,n−r = (G

(,,r)
i ŵi∂

(n)−1)∂(n)(∂(n)ŵ−1
i G

(,,r)−1
i )

= G
(,,r)
i ŵi∂

(n)ŵ−1
i G

(,,r)−1
i = G

(,,r)
i QiG

(,,r)−1
i .

The mapping Qi → Q̃i = Qi+m, where m = ,n− r , we denote as sm.
Let m1 = ,1n− r1 and m2 = ,2n− r2. By virtue of (24), where ,3 = ,2, ,4 = ,1, r3 = r2

and r4 = r1 we get

Qi+m1+m2 = G
(,1,r1)
i+m2

Qi+m2G
(,1,r1)−1
i+m2

= G
(,1,r1)
i+m2

G
(r2)
i QiG

(,2,r2)−1
i G

(,1,r1)−1
i+m2

= G
(,2,r2)
i+m1

G
(,1,r1)
i QiG

(,,r1)−1
i G

(,2,r2)−1
i+m1

= G
(,2,r2)
i+m1

Qi+m1G
(,2,r2)−1
i+m1

.

From this follows the pair-wise compatibility of transformations sm1 and sm2 for any integers
m1 and m2. So we can write sm1 ◦ sm2 = sm2 ◦ sm1 . The inverse maps s−1

m are well defined by
the formula Qi−,n+r = G

(,,r)−1
i−,n+r QiG

(,,r)
i−,n+r = G

(−,,−r)
i QiG

(−,,−r)−1
i . �

Rewrite the second equation in (13) as zn−1Hi�i(t, z) = �i+n(t, z) = (�n�)i . From this
we derive

zk(1−n)(�kn�)i = Hi+(k−1)n · · ·Hi+nHi�i

zk(n−1)(�−kn�)i = H−1
i−kn · · ·H−1

i−2nH
−1
i−n�i.

These relations make a one-to-one connection between difference operators

P =
∑
k∈Z

zk(1−n)pk(t)�
kn ∈ D(n,0)

and the sequences of ∂(n)-pseudo-differential operators {Pi , i ∈ Z} mapping the upper
triangular part of the given matrix (including the main diagonal) into the differential parts
of Pi and the lower triangular part of the matrix to the purely pseudo-differential parts. More
exactly, we have (P�)i = Pi�i , (P−�)i = (Pi )−�i and (P+�)i = (Pi )+�i , where

Pi =
∑
k>0

p−k(i, t)H
−1
i−kn . . . H−1

i−2nH
−1
i−n +

∑
k�0

pk(i, t)Hi+(k−1)n · · ·Hi+nHi

= (Pi )− + (Pi )+.

In what follows, we denote σ : P ∈ D(n,0)→ {Pi , i ∈ Z}. It is easy to check that

σ : z,(1−n)�,n−rQr → {G(,,r)
i , i ∈ Z}. (26)

Proposition 5. Equations zp(n−1)∂(n)
p � = Q

pn
+ �, p = 2, 3, . . . are equivalent to ∂(n)

p ψi =
(Qp

i )+ψi, p = 2, 3, . . . .
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Proof. Setting r = ,n in (26) gives

σ : zp(1−n)Qpn→ {Qp

i , i ∈ Z}.
Taking this into account, we have

zi∂(n)
p ψi = ∂(n)

p �i = zp(1−n)(Q
pn
+ �)i = (Qp

i )+�i = zi(Qp

i )+ψi

which proves the proposition. �
We learn from this proposition that the nth discrete KP is in fact equivalent to a bi-infinite

sequence of differential KP hierarchies whose evolution equations can be written as the Sato–
Wilson equation

∂(n)
p ŵi = (Qp

i )+ŵi − ŵi∂
(n)p (27)

where ŵi are connected by relations (14), or equivalently as the Lax equation

∂(n)
p Qi = [(Qp

i )+,Qi] (28)

where Qi are connected by the gauge transformations (25).
Let us establish equations treating G

(r)
i -evolutions with respect to KP flows.

Differentiating the lhs and rhs of (14), by virtue of (27), formally leads to evolution equation

∂(n)
p G

(r)
i = (Qp

i+n−r )+G
(r)
i −G

(r)
i (Qp

i )+. (29)

Note that in the case r = n, the latter becomes the Lax equation (28). Using standard
arguments, one can show that equations (29) are properly defined individually. Indeed, taking
into account (25), one can write Qp

i+n−r = G
(r)
i Qp

i G
(r)−1
i or Qp

i+n−rG
(r)
i = G

(r)
i Qp

i for any
p ∈ N . It follows from this that

(Qp

i+n−r )+G
(r)
i −G

(r)
i (Qp

i )+ = G
(r)
i (Qp

i )− − (Qp

i+n−r )−G
(r)
i .

Thus the rhs of (29) as well as the lhs is a �DO of zero order. Moreover, in the case r = 0,
i.e. when G

(0)
i = Hi , the rhs of (29) is a zeroth-order differential operator or simple function.

It is now easy to establish G
(,,r)
i -evolutions with respect to KP flows. We have the following

proposition.

Proposition 6. By virtue of (19) and (29), we have

∂(n)
p G

(,,r)
i = (Qp

i+,n−r )+G
(,,r)
i −G

(,,r)
i (Qp

i )+. (30)

Proof. In the case , = 0, we obtain

∂(n)
p G

(0,r)
i = ∂(n)

p (G
(r)
i−nH

−1
i−n) = {(Qp

i−r )+G
(r)
i−n −G

(r)
i−n(Qp

i−n)+}H−1
i−n

−G
(r)
i−nH

−1
i−n{(Qp

i )+Hi−n −Hi−n(Qp

i−n)+}H−1
i−n

= (Qp

i−r )+G
(0,r)
i −G

(0,r)
i (Qp

i )+.

Since G
(1,r)
i = G

(r)
i , equation (30) in the case , = 1 immediately follows from (29). The proof

of (30) proceeds by induction. Assume that (30) is valid for some ,, then

∂(n)
p G

(,+1,r)
i = ∂(n)

p (G
(,,r)
i+n Hi) = {(Qp

i+(,+1)n−r )+G
(,,r)
i+n −G

(,,r)
i+n (Qp

i+n)+}Hi

+ G
(,,r)
i+n {(Qp

i+n)+Hi −Hi(Qp

i )+}
= (Qp

i+(,+1)n−r )+G
(,+1,r)
i −G

(,+1,r)
i (Qp

i )+.

This proves (30) for positive integers ,. By similar arguments equation (30) is shown for
negative ,. �
Proposition 7. Equations (30) are pair-wise compatible.
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Proof. One must show that permutation relation (24) is invariant with respect to KP flows.
With the identities ,1 + ,2 = ,3 + ,4 and r1 + r2 = r3 + r4, we have

∂(n)
p (G

(,1,r1)
i+,2n−r2

G
(,2,r2)
i ) = {(Qp

i+(,1+,2)n−r1−r2
)+G

(,1,r1)
i+,2n−r2

−G
(,1,r1)
i+,2n−r2

(Qp

i+,2n−r2
)+}G(,2,r2)

i

+ G
(,1,r1)
i+,2n−r2

{(Qp

i+,2n−r2
)+G

(,2,r2)
i −G

(,2,r2)
i (Qp

i )+}
= (Qp

i+(,1+,2)n−r1−r2
)+G

(,1,r1)
i+,2n−r2

G
(,2,r2)
i −G

(,1,r1)
i+,2n−r2

G
(,2,r2)
i (Qp

i )+

= (Qp

i+(,3+,4)n−r3−r4
)+G

(,4,r4)
i+,3n−r3

G
(,3,r3)
i −G

(,4,r4)
i+,3n−r3

G
(,3,r3)
i (Qp

i )+

= {(Qp

i+(,3+,4)n−r3−r4
)+G

(,4,r4)
i+,3n−r3

−G
(,4,r4)
i+,3n−r3

(Qp

i+,3n−r3
)+}G(,3,r3)

i

+ G
(,4,r4)
i+,3n−r3

{(Qp

i+,3n−r3
)+G

(,3,r3)
i −G

(,3,r3)
i (Qp

i )+} = ∂(n)
p (G

(,4,r4)
i+,3n−r3

G
(,3,r3)
i ).

Therefore we have proved that equations (30) are pair-wise consistent. �

The fact thatψi(t, z) = ŵieξ(t(n),z) are KP wave eigenfunctions force them to be expressible
via τ -functions

ψi(t, z) = τ
(n)
i (t (1), . . . , t (n) − [z−1], . . .)

τ
(n)
i (t (1), . . . , t (n), . . .)

eξ(t(n),z)

where [z−1] ≡ (1/z, 1/(2z2), . . .). Define 1
(n)
i = 1

(n)
i (t) via Hi1

(n)
i = 0, or equivalently

through the following relation:

∂(n)1
(n)
i = 1

(n)
i

n∑
s=1

a
(n)
0 (i + s − 1).

Taking into consideration (29), we get

∂(n)
p (Hi1

(n)
i ) = (Qp

i+n)+Hi1
(n)
i −Hi(Qp

i )+1
(n)
i + Hi∂

(n)
p 1

(n)
i = 0.

From this we derive ∂(n)
p 1

(n)
i = (Qp

i )+1
(n)
i + αi1

(n)
i where αi are some constants.

Commutativity condition ∂(n)
p ∂(n)

q 1
(n)
i = ∂(n)

q ∂(n)
p 1

(n)
i leads to evolution equations for KP

eigenfunctions ∂(n)
p 1

(n)
i = (Qp

i )+1
(n)
i , i.e.αi = 0. Thus the relationsQi+n = HiQiH

−1
i defines

DB transformations with eigenfunctions 1
(n)
i = τ

(n)
i+n/τ

(n)
i [11]. Recall that an eigenfunction

of the Lax operator Q contains information about DB transformation τ → τ = 1τ while the
identity

{τ(t − [z−1]), τ (t)} + z(τ (t − [z−1])τ (t)− τ(t − [z−1])τ (t)) = 0

with {f, g} ≡ ∂f · g − ∂g · f holds.

Proposition 8. We have

a
(n,r)
, (i) = p,+1(D̃t(n) )τ

(n)
i−,n+r • τ (n)

i

τ
(n)
i−,n+r τ

(n)
i

. (31)

Proof. To show (31), we need the well known identity [8]

resz[(P exz) · (Qe−xz)] = res∂PQ∗ (32)

where P = ∑
k∈Z pk(x)∂

k and Q = ∑
k∈Z qk(x)∂

k are two arbitrary �DOs and Q∗ is the
formal adjoint to Q.
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To further use the identity (32) we set P = G
(,,r)
i ŵi and Q = ŵ∗−1

i . Taking into
account (20), (32) and applying proposition 2, we get

a
(n,r)
, (i + ,n− r) = resz[(G

(,,r)
i ŵie

x(n)z)(ŵ∗−1
i e−x(n)z)]

= resz[(G
(,,r)
i ŵie

ξ(t(n),z))(ŵ∗−1
i e−ξ(t(n),z))]

= resz[(G
(,,r)
i ψi(t, z))ψ

∗
i (t, z)] = resz[z

,ψi+,n−r (t, z)ψ
∗
i (t, z)]

= resz

[
z,

τ
(n)
i+,n−r (t

(1), . . . , t (n) − [z−1], . . .)τ (n)
i (t (1), . . . , t (n) + [z−1], . . .)

τ
(n)
i+,n−r (t

(1), . . . , t (n), . . .)τ
(n)
i (t (1), . . . , t (n), . . .)

]

= 1

(, + 1)!

(
d

du

),+1

×
[
τ

(n)
i+,n−r (t

(1), . . . , t (n) − [u], . . .)τ (n)
i (t (1), . . . , t (n) + [u], . . .)

τ
(n)
i+,n−r (t

(1), . . . , t (n), . . .)τ
(n)
i (t (1), . . . , t (n), . . .)

]∣∣∣∣
u=0

.

Now using the technical identity (4) we obtain

a
(n,r)
, (i + ,n− r) = p,+1(D̃t(n) )τ

(n)
i • τ (n)

i+,n−r

τ
(n)
i τ

(n)
i+,n−r

.

Shifting i → i − ,n + r in the latter we arrive at (31). �

Remark 4. By (31), we can express Qr in terms of τ -functions as

Qr =
∞∑
,=0

diag

(
p,(D̃t(n) )τ

(n)

i−(,−1)n+r • τ (n)
i

τ
(n)

i−(,−1)n+rτ
(n)
i

)
i∈Z

z,(n−1)�r−,n. (33)

In the case of ordinary discrete KP hierarchy (n = 1), (33) coincides with the formula (0.13)
of the paper [9].

Since a
(n,0)
, (i) = 0, then as a consequence of the above proposition we deduce the

following bilinear equations:

p,+1(D̃t(n) )τ
(n)
i−,n • τ (n)

i = 0 , = 0, 1, . . . . (34)

With the well known bilinear identity for KP wave eigenfunction (see, for example, [13])

resz[(∂
k1
1 . . . ∂km

m ψ(t, z)) · ψ∗(t, z)] = 0

and the fact that G
(,,,n)
i , , = 0, 1, . . . are purely differential operators, one can deduce the

following proposition.

Proposition 9. The τ -functions of the nth discrete KP hierarchy satisfy

resz[z
,τ

(n)
i+,n(t

(1), . . . , t (n) − [z−1], . . .)τ (n)
i (t (1), . . . , t (n)

′
+ [z−1], . . .)

× exp ξ(t (n) − t (n)
′
, z)] = 0 ∀t (n), t (n)′ , , = 0, 1, 2 . . . . (35)

Relation (35) simply means that τ
(n)
i and τ

(n)
i+n, for each i ∈ Z are related by DB

transformation with corresponding eigenfunction 1
(n)
i = τ

(n)
i+n/τ

(n)
i , as was mentioned before.

Of course, in the case n = 1, (35) coincides with the known bilinear identity for the discrete
KP τ -function [9]. One can check that relations (34) constitute a part of all bilinear equations
coded in (35).

Unfortunately, at present we do not know how to construct the full set of bilinear identities
characterizing the extended discrete KP hierarchy and we leave this question for future
investigations.
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